Low-Level Design: A Comprehensive Guide

Chapter 1: Introduction to Design Patterns

Theoretical Significance of Design Patterns in Software Engineering

Design patterns constitute a compendium of best practices that provide pre-established solutions to frequently encountered problems in software architecture. These patterns underpin the development of flexible, extensible, and maintainable systems by enabling robust abstractions and facilitating code reuse. A profound understanding of design patterns empowers developers to construct resilient systems that are both testable and scalable.

Design patterns address common software design challenges such as:

  1. Reducing tight coupling between components.
  2. Enhancing scalability and flexibility of systems.
  3. Improving code readability and maintainability.

For example, the Observer Pattern can be used in a stock market application to notify multiple clients of changes in stock prices.

Taxonomy of Design Patterns

Design patterns are systematically classified into three overarching categories:

  1. Creational Patterns: These deal with object creation mechanisms and abstract the instantiation process to make systems independent of the objects they create. Examples:
    • Factory: Centralizes object creation logic.
    • Singleton: Ensures only one instance of a class exists.
  2. Structural Patterns: These focus on composing classes and objects into larger structures while ensuring that the overall architecture remains flexible and efficient. Examples:
    • Adapter: Makes incompatible interfaces work together.
    • Composite: Models part-whole hierarchies using tree structures.
  3. Behavioral Patterns: These deal with communication and interaction between objects. Examples:
    • Strategy: Defines interchangeable algorithms encapsulated within a class.
    • Observer: Establishes a one-to-many dependency between objects.

Unified Modeling Language (UML) as a Visualization Tool

Unified Modeling Language (UML) diagrams are indispensable tools for visualizing, specifying, constructing, and documenting software systems. Key diagram types include:

  • Class Diagrams: Represent the structure of a system by showing its classes, attributes, and relationships.
  • Sequence Diagrams: Highlight object interactions over time. Example: A sequence diagram for user authentication.
  • State Diagrams: Illustrate state transitions of an object in response to events. Example: The lifecycle of a TCP connection.
  • Activity Diagrams: Describe workflows and the sequence of actions within a process.

Practical Example: Observer Pattern in Python

Imagine a stock market application where multiple clients (observers) need updates when stock prices change:

class Stock:
   def __init__(self, symbol):
       self.symbol = symbol
       self.price = 0
       self.observers = []

   def add_observer(self, observer):
       self.observers.append(observer)

   def remove_observer(self, observer):
       self.observers.remove(observer)

   def set_price(self, price):
       self.price = price
       self.notify_observers()

   def notify_observers(self):
       for observer in self.observers:
           observer.update(self)

class Investor:
   def __init__(self, name):
       self.name = name

   def update(self, stock):
       print(f"{self.name} notified of {stock.symbol} price change to {stock.price}")

# Example usage
apple = Stock("AAPL")
john = Investor("John")
mary = Investor("Mary")

apple.add_observer(john)
apple.add_observer(mary)

apple.set_price(150)
# Output:
# John notified of AAPL price change to 150
# Mary notified of AAPL price change to 150

This example demonstrates how the Observer Pattern decouples the stock from the investors, making the system more flexible and maintainable.

Chapter 2: Foundational Principles of Object-Oriented Design

Encapsulation

Encapsulation is the principle of bundling data (attributes) and methods (functions) that operate on the data into a single unit, typically a class. It restricts access to some of an object’s components, which is critical for protecting the integrity of the data and hiding implementation details. Encapsulation is achieved through access modifiers like private, protected, and public.

Example:

class BankAccount:
   def __init__(self, account_number, balance):
       self.__account_number = account_number  # Private attribute
       self.__balance = balance

   def deposit(self, amount):
       if amount > 0:
           self.__balance += amount
           print(f"Deposited {amount}. New balance is {self.__balance}.")
       else:
           print("Deposit amount must be positive.")

   def withdraw(self, amount):
       if 0 < amount <= self.__balance:
           self.__balance -= amount
           print(f"Withdrew {amount}. Remaining balance is {self.__balance}.")
       else:
           print("Invalid withdrawal amount.")

   def get_balance(self):
       return self.__balance

# Example usage
account = BankAccount("12345", 1000)

account.deposit(500)
account.withdraw(200)
print(account.get_balance())  # Output: 1300

In this example, encapsulation ensures that the __balance attribute cannot be directly accessed or modified, protecting the account’s integrity.

Inheritance

Inheritance allows a class (child) to inherit attributes and methods from another class (parent), promoting code reuse and hierarchical relationships. However, inheritance must be used judiciously to avoid excessive coupling.

Example:

class Vehicle:
   def __init__(self, brand, model):
       self.brand = brand
       self.model = model

   def start(self):
       print(f"Starting {self.brand} {self.model}.")

class Car(Vehicle):
   def __init__(self, brand, model, doors):
       super().__init__(brand, model)
       self.doors = doors

   def honk(self):
       print(f"{self.brand} {self.model} goes 'beep beep'!")

# Example usage
my_car = Car("Toyota", "Corolla", 4)
my_car.start()
my_car.honk()

Polymorphism

Polymorphism allows objects to be treated as instances of their parent class rather than their actual class. This enables the use of a single interface to represent different types.

Example:

class Animal:
    def speak(self):
        pass

class Dog(Animal):
    def speak(self):
        print("Woof!")

class Cat(Animal):
    def speak(self):
        print("Meow!")

# Example usage
animals = [Dog(), Cat()]
for animal in animals:
    animal.speak()

Abstraction

Abstraction focuses on exposing only essential details and hiding the implementation. It is typically achieved using abstract classes or interfaces.

Example:

from abc import ABC, abstractmethod

class Shape(ABC):
    @abstractmethod
    def area(self):
        pass

    @abstractmethod
    def perimeter(self):
        pass

class Rectangle(Shape):
    def __init__(self, width, height):
        self.width = width
        self.height = height

    def area(self):
        return self.width * self.height

    def perimeter(self):
        return 2 * (self.width + self.height)

# Example usage
rect = Rectangle(10, 5)
print("Area:", rect.area())
print("Perimeter:", rect.perimeter())

Chapter 3: Core Design Philosophies

Encapsulate What Varies

Encapsulating what varies involves identifying volatile components of a system and isolating them, enabling easier modification without impacting the stable parts. This philosophy lies at the heart of many design patterns, including Strategy and Observer.

Example: Using Strategy Pattern

class PaymentStrategy:
    def pay(self, amount):
        pass

class CreditCardPayment(PaymentStrategy):
    def pay(self, amount):
        print(f"Paid {amount} using Credit Card.")

class PayPalPayment(PaymentStrategy):
    def pay(self, amount):
        print(f"Paid {amount} using PayPal.")

class ShoppingCart:
    def __init__(self):
        self.items = []

    def add_item(self, item):
        self.items.append(item)

    def calculate_total(self):
        return sum(item['price'] for item in self.items)

    def checkout(self, payment_strategy):
        total = self.calculate_total()
        payment_strategy.pay(total)

# Example usage
cart = ShoppingCart()
cart.add_item({'name': 'Laptop', 'price': 1000})
cart.add_item({'name': 'Mouse', 'price': 50})

cart.checkout(CreditCardPayment())
cart.checkout(PayPalPayment())

Program to an Interface, Not an Implementation

This principle ensures that code depends on abstractions rather than specific implementations, making it easier to extend and modify without affecting existing code.

Example:

from abc import ABC, abstractmethod

class NotificationService(ABC):
    @abstractmethod
    def send_notification(self, message):
        pass

class EmailNotification(NotificationService):
    def send_notification(self, message):
        print(f"Sending Email: {message}")

class SMSNotification(NotificationService):
    def send_notification(self, message):
        print(f"Sending SMS: {message}")

class NotificationManager:
    def __init__(self, service: NotificationService):
        self.service = service

    def notify(self, message):
        self.service.send_notification(message)

# Example usage
email_service = EmailNotification()
sms_service = SMSNotification()

manager = NotificationManager(email_service)
manager.notify("Hello via Email!")

manager = NotificationManager(sms_service)
manager.notify("Hello via SMS!")

Favor Composition Over Inheritance

Favoring composition involves designing systems where objects are composed with behaviors rather than relying on deep inheritance hierarchies. This makes the system more modular and easier to modify.

Example:

class Engine:
    def start(self):
        print("Engine started.")

class Car:
    def __init__(self, engine: Engine):
        self.engine = engine

    def start(self):
        self.engine.start()
        print("Car is ready to drive.")

# Example usage
engine = Engine()
car = Car(engine)
car.start()

Chapter 4: The SOLID Design Principles

Single Responsibility Principle (SRP)

A class must have only one responsibility, meaning it should encapsulate a singular concern. This reduces the likelihood of introducing errors when modifying the system. For example:

Example:

class Invoice:
    def __init__(self, items, total):
        self.items = items
        self.total = total

class InvoicePrinter:
    def print_invoice(self, invoice: Invoice):
        print("Invoice Details:")
        for item in invoice.items:
            print(f"- {item}")
        print(f"Total: {invoice.total}")

# Example usage
invoice = Invoice(["Item1", "Item2"], 100)
printer = InvoicePrinter()
printer.print_invoice(invoice)

Open/Closed Principle (OCP)

Classes should be open for extension but closed for modification. This ensures that new functionality can be added without altering existing code.

Example:

class Discount:
    def apply(self, total):
        return total

class SeasonalDiscount(Discount):
    def apply(self, total):
        return total * 0.9

class ClearanceDiscount(Discount):
    def apply(self, total):
        return total * 0.8

class Cart:
    def __init__(self, total):
        self.total = total

    def apply_discount(self, discount: Discount):
        self.total = discount.apply(self.total)

# Example usage
cart = Cart(100)
cart.apply_discount(SeasonalDiscount())
print(cart.total)  # Output: 90

Liskov Substitution Principle (LSP)

Subtypes must be substitutable for their base types without altering the correctness of the program. This ensures that derived classes extend functionality without changing the expected behavior.

Example:

class Bird:
    def fly(self):
        print("This bird can fly.")

class Sparrow(Bird):
    def fly(self):
        print("Sparrow flying high.")

class Ostrich(Bird):
    def fly(self):
        raise Exception("Ostriches can't fly.")

# Correct implementation
class FlightlessBird(Bird):
    def fly(self):
        print("This bird doesn't fly.")

class Penguin(FlightlessBird):
    pass

# Example usage
birds = [Sparrow(), Penguin()]
for bird in birds:
    bird.fly()

Interface Segregation Principle (ISP)

Clients should not be forced to depend on methods they do not use. This can be achieved by creating smaller, more specific interfaces.

Example:

class Printer:
    def print_document(self):
        pass

class Scanner:
    def scan_document(self):
        pass

class AllInOnePrinter(Printer, Scanner):
    def print_document(self):
        print("Printing document...")

    def scan_document(self):
        print("Scanning document...")

# Example usage
printer = AllInOnePrinter()
printer.print_document()
printer.scan_document()

Dependency Inversion Principle (DIP)

High-level modules should not depend on low-level modules. Both should depend on abstractions.

Example:

from abc import ABC, abstractmethod

class NotificationService(ABC):
    @abstractmethod
    def send(self, message):
        pass

class EmailService(NotificationService):
    def send(self, message):
        print(f"Sending Email: {message}")

class SMSService(NotificationService):
    def send(self, message):
        print(f"Sending SMS: {message}")

class NotificationManager:
    def __init__(self, service: NotificationService):
        self.service = service

    def notify(self, message):
        self.service.send(message)

# Example usage
email_service = EmailService()
manager = NotificationManager(email_service)
manager.notify("Hello World")

Chapter 5: Creational Design Patterns

Simple Factory

The Simple Factory pattern centralizes object creation logic, encapsulating the instantiation process within a single factory class. This pattern provides a convenient way to create objects without exposing the underlying instantiation logic to the client.

Example:

class Shape:
    def draw(self):
        pass

class Circle(Shape):
    def draw(self):
        print("Drawing a Circle")

class Square(Shape):
    def draw(self):
        print("Drawing a Square")

class ShapeFactory:
    @staticmethod
    def create_shape(shape_type):
        if shape_type == "circle":
            return Circle()
        elif shape_type == "square":
            return Square()
        else:
            raise ValueError("Unknown shape type")

# Example usage
shape = ShapeFactory.create_shape("circle")
shape.draw()  # Output: Drawing a Circle

Singleton Pattern

The Singleton Pattern ensures that a class has only one instance and provides a global access point to that instance. It is commonly used for managing shared resources such as configuration settings or database connections.

Example:

class Singleton:
    _instance = None

    def __new__(cls, *args, **kwargs):
        if not cls._instance:
            cls._instance = super().__new__(cls, *args, **kwargs)
        return cls._instance

# Example usage
singleton1 = Singleton()
singleton2 = Singleton()
print(singleton1 is singleton2)  # Output: True

Factory Method Pattern

The Factory Method pattern defines an interface for creating objects but allows subclasses to alter the type of objects that will be created.

Example:

from abc import ABC, abstractmethod

class Shape(ABC):
    @abstractmethod
    def draw(self):
        pass

class Circle(Shape):
    def draw(self):
        print("Drawing a Circle")

class Square(Shape):
    def draw(self):
        print("Drawing a Square")

class ShapeFactory(ABC):
    @abstractmethod
    def create_shape(self):
        pass

class CircleFactory(ShapeFactory):
    def create_shape(self):
        return Circle()

class SquareFactory(ShapeFactory):
    def create_shape(self):
        return Square()

# Example usage
factory = CircleFactory()
shape = factory.create_shape()
shape.draw()

Abstract Factory Pattern

The Abstract Factory pattern provides an interface for creating families of related or dependent objects without specifying their concrete classes. This pattern is useful when the client code needs to work with a group of related objects that are designed to work together.

Example:

from abc import ABC, abstractmethod

# Abstract product classes
class Chair(ABC):
    @abstractmethod
    def sit_on(self):
        pass

class Table(ABC):
    @abstractmethod
    def use(self):
        pass

# Concrete product classes
class ModernChair(Chair):
    def sit_on(self):
        print("Sitting on a modern chair.")

class ModernTable(Table):
    def use(self):
        print("Using a modern table.")

class VictorianChair(Chair):
    def sit_on(self):
        print("Sitting on a Victorian chair.")

class VictorianTable(Table):
    def use(self):
        print("Using a Victorian table.")

# Abstract factory
class FurnitureFactory(ABC):
    @abstractmethod
    def create_chair(self):
        pass

    @abstractmethod
    def create_table(self):
        pass

# Concrete factories
class ModernFurnitureFactory(FurnitureFactory):
    def create_chair(self):
        return ModernChair()

    def create_table(self):
        return ModernTable()

class VictorianFurnitureFactory(FurnitureFactory):
    def create_chair(self):
        return VictorianChair()

    def create_table(self):
        return VictorianTable()

# Example usage
def create_furniture(factory: FurnitureFactory):
    chair = factory.create_chair()
    table = factory.create_table()
    chair.sit_on()
    table.use()

modern_factory = ModernFurnitureFactory()
victorian_factory = VictorianFurnitureFactory()

create_furniture(modern_factory)
create_furniture(victorian_factory)

Builder Pattern

The Builder pattern separates the construction of a complex object from its representation so that the same construction process can create different representations. It is particularly useful when an object has many optional parts.

Example:

# Product class
class House:
    def __init__(self):
        self.wall_material = None
        self.door_type = None
        self.num_windows = 0

    def __str__(self):
        return f"House with {self.wall_material} walls, {self.door_type} door, and {self.num_windows} windows."

# Abstract builder
class HouseBuilder:
    def set_wall_material(self, material):
        pass

    def set_door_type(self, door_type):
        pass

    def set_num_windows(self, count):
        pass

    def build(self):
        pass

# Concrete builder
class ConcreteHouseBuilder(HouseBuilder):
    def __init__(self):
        self.house = House()

    def set_wall_material(self, material):
        self.house.wall_material = material

    def set_door_type(self, door_type):
        self.house.door_type = door_type

    def set_num_windows(self, count):
        self.house.num_windows = count

    def build(self):
        return self.house

# Director
class HouseDirector:
    def __init__(self, builder: HouseBuilder):
        self.builder = builder

    def construct(self):
        self.builder.set_wall_material("brick")
        self.builder.set_door_type("wooden")
        self.builder.set_num_windows(4)
        return self.builder.build()

# Example usage
builder = ConcreteHouseBuilder()
director = HouseDirector(builder)
house = director.construct()
print(house)  # Output: House with brick walls, wooden door, and 4 windows.

Chapter 6: Structural Design Patterns

Structural design patterns focus on how objects and classes are composed to form larger structures while keeping these structures flexible and efficient. These patterns streamline relationships between different entities, improving code readability and maintainability.

Adapter Pattern

The Adapter pattern bridges the gap between incompatible interfaces by converting one interface into another that a client expects. It is particularly useful when integrating old code with new systems.

Example:

class OldSystem:
    def specific_request(self):
        return "Old system functionality"

class Target:
    def request(self):
        pass

class Adapter(Target):
    def __init__(self, adaptee):
        self.adaptee = adaptee

    def request(self):
        return self.adaptee.specific_request()

# Example usage
old_system = OldSystem()
adapter = Adapter(old_system)
print(adapter.request())  # Output: Old system functionality

Bridge Pattern

The Bridge pattern decouples an abstraction from its implementation, allowing them to vary independently. This pattern is particularly helpful in scenarios where a class has multiple dimensions of variability.

Example:

class Renderer:
    def render_circle(self, radius):
        pass

class VectorRenderer(Renderer):
    def render_circle(self, radius):
        print(f"Drawing a circle with radius {radius} using vector rendering.")

class RasterRenderer(Renderer):
    def render_circle(self, radius):
        print(f"Drawing a circle with radius {radius} using raster rendering.")

class Shape:
    def __init__(self, renderer):
        self.renderer = renderer

    def draw(self):
        pass

class Circle(Shape):
    def __init__(self, renderer, radius):
        super().__init__(renderer)
        self.radius = radius

    def draw(self):
        self.renderer.render_circle(self.radius)

# Example usage
vector_renderer = VectorRenderer()
raster_renderer = RasterRenderer()

circle = Circle(vector_renderer, 5)
circle.draw()  # Output: Drawing a circle with radius 5 using vector rendering.

circle.renderer = raster_renderer
circle.draw()  # Output: Drawing a circle with radius 5 using raster rendering.

Composite Pattern

The Composite pattern allows you to compose objects into tree structures to represent part-whole hierarchies. It enables clients to treat individual objects and compositions uniformly.

Example:

class Component:
    def operation(self):
        pass

class Leaf(Component):
    def __init__(self, name):
        self.name = name

    def operation(self):
        print(f"Leaf {self.name} operation.")

class Composite(Component):
    def __init__(self):
        self.children = []

    def add(self, component):
        self.children.append(component)

    def remove(self, component):
        self.children.remove(component)

    def operation(self):
        print("Composite operation begins.")
        for child in self.children:
            child.operation()
        print("Composite operation ends.")

# Example usage
leaf1 = Leaf("A")
leaf2 = Leaf("B")
composite = Composite()
composite.add(leaf1)
composite.add(leaf2)
composite.operation()

Decorator Pattern

The Decorator pattern dynamically adds behavior or responsibilities to objects without modifying their code. This pattern is ideal for adhering to the Open/Closed Principle.

Example:

class Coffee:
    def cost(self):
        return 5

    def description(self):
        return "Plain coffee"

class MilkDecorator:
    def __init__(self, coffee):
        self.coffee = coffee

    def cost(self):
        return self.coffee.cost() + 2

    def description(self):
        return self.coffee.description() + ", Milk"

class SugarDecorator:
    def __init__(self, coffee):
        self.coffee = coffee

    def cost(self):
        return self.coffee.cost() + 1

    def description(self):
        return self.coffee.description() + ", Sugar"

# Example usage
coffee = Coffee()
milk_coffee = MilkDecorator(coffee)
sugar_milk_coffee = SugarDecorator(milk_coffee)

print(sugar_milk_coffee.description())  # Output: Plain coffee, Milk, Sugar
print(sugar_milk_coffee.cost())  # Output: 8

Facade Pattern

The Facade pattern provides a simplified interface to a complex subsystem, making it easier for clients to interact with the system.

Example:

class SubsystemA:
    def operation_a(self):
        print("Subsystem A operation.")

class SubsystemB:
    def operation_b(self):
        print("Subsystem B operation.")

class Facade:
    def __init__(self):
        self.subsystem_a = SubsystemA()
        self.subsystem_b = SubsystemB()

    def operation(self):
        print("Facade simplifies subsystem operations.")
        self.subsystem_a.operation_a()
        self.subsystem_b.operation_b()

# Example usage
facade = Facade()
facade.operation()

Flyweight Pattern

The Flyweight pattern reduces memory usage by sharing common parts of object states rather than creating new objects for each state.

Example:

class Flyweight:
    def __init__(self, shared_state):
        self.shared_state = shared_state

    def operation(self, unique_state):
        print(f"Shared: {self.shared_state}, Unique: {unique_state}")

class FlyweightFactory:
    def __init__(self):
        self.flyweights = {}

    def get_flyweight(self, shared_state):
        if shared_state not in self.flyweights:
            self.flyweights[shared_state] = Flyweight(shared_state)
        return self.flyweights[shared_state]

# Example usage
factory = FlyweightFactory()
flyweight1 = factory.get_flyweight("State1")
flyweight2 = factory.get_flyweight("State1")

flyweight1.operation("Unique1")
flyweight2.operation("Unique2")

print(flyweight1 is flyweight2)  # Output: True

Proxy Pattern

The Proxy pattern provides a surrogate or placeholder object to control access to another object. It is useful for adding security or caching functionality.

Example:

class RealSubject:
    def request(self):
        print("RealSubject: Handling request.")

class Proxy:
    def __init__(self, real_subject):
        self.real_subject = real_subject

    def request(self):
        print("Proxy: Checking access before forwarding the request.")
        self.real_subject.request()

# Example usage
real_subject = RealSubject()
proxy = Proxy(real_subject)
proxy.request()

Chapter 7: Behavioral Design Patterns

Behavioral design patterns focus on communication between objects. They help define how objects interact, delegate responsibilities, and ensure flexibility in executing complex behaviors.

Chain of Responsibility Pattern

The Chain of Responsibility pattern decouples the sender and receiver of a request by passing the request along a chain of handlers. Each handler decides whether to process the request or pass it to the next handler.

Example:

class Handler:
    def __init__(self, successor=None):
        self.successor = successor

    def handle_request(self, request):
        if self.successor:
            self.successor.handle_request(request)

class ConcreteHandlerA(Handler):
    def handle_request(self, request):
        if request == "A":
            print("Handler A processed the request.")
        elif self.successor:
            self.successor.handle_request(request)

class ConcreteHandlerB(Handler):
    def handle_request(self, request):
        if request == "B":
            print("Handler B processed the request.")
        elif self.successor:
            self.successor.handle_request(request)

# Example usage
handler_chain = ConcreteHandlerA(ConcreteHandlerB())
handler_chain.handle_request("A")  # Output: Handler A processed the request.
handler_chain.handle_request("B")  # Output: Handler B processed the request.

Command Pattern

The Command pattern encapsulates a request as an object, allowing clients to parameterize objects with different requests, delay execution, or queue requests.

Example:

class Command:
    def execute(self):
        pass

class Light:
    def turn_on(self):
        print("Light is ON")

    def turn_off(self):
        print("Light is OFF")

class TurnOnCommand(Command):
    def __init__(self, light):
        self.light = light

    def execute(self):
        self.light.turn_on()

class TurnOffCommand(Command):
    def __init__(self, light):
        self.light = light

    def execute(self):
        self.light.turn_off()

class RemoteControl:
    def __init__(self):
        self.command = None

    def set_command(self, command):
        self.command = command

    def press_button(self):
        self.command.execute()

# Example usage
light = Light()
turn_on = TurnOnCommand(light)
turn_off = TurnOffCommand(light)

remote = RemoteControl()
remote.set_command(turn_on)
remote.press_button()  # Output: Light is ON
remote.set_command(turn_off)
remote.press_button()  # Output: Light is OFF

Observer Pattern

The Observer pattern establishes a one-to-many dependency between objects so that when one object changes state, all its dependents are notified.

Example:

class Subject:
    def __init__(self):
        self.observers = []

    def attach(self, observer):
        self.observers.append(observer)

    def detach(self, observer):
        self.observers.remove(observer)

    def notify(self):
        for observer in self.observers:
            observer.update()

class ConcreteObserver:
    def __init__(self, name):
        self.name = name

    def update(self):
        print(f"{self.name} received an update.")

# Example usage
subject = Subject()
observer1 = ConcreteObserver("Observer 1")
observer2 = ConcreteObserver("Observer 2")

subject.attach(observer1)
subject.attach(observer2)

subject.notify()
# Output:
# Observer 1 received an update.
# Observer 2 received an update.

Strategy Pattern

The Strategy pattern defines a family of algorithms, encapsulates each one, and makes them interchangeable. This pattern enables the algorithm to vary independently from the clients that use it.

Example:

class Strategy:
    def execute(self):
        pass

class ConcreteStrategyA(Strategy):
    def execute(self):
        print("Executing Strategy A")

class ConcreteStrategyB(Strategy):
    def execute(self):
        print("Executing Strategy B")

class Context:
    def __init__(self, strategy):
        self.strategy = strategy

    def set_strategy(self, strategy):
        self.strategy = strategy

    def execute_strategy(self):
        self.strategy.execute()

# Example usage
context = Context(ConcreteStrategyA())
context.execute_strategy()  # Output: Executing Strategy A

context.set_strategy(ConcreteStrategyB())
context.execute_strategy()  # Output: Executing Strategy B

State Pattern

The State pattern allows an object to alter its behavior when its internal state changes. The object appears to change its class.

Example:

class State:
    def handle(self):
        pass

class ConcreteStateA(State):
    def handle(self):
        print("Handling State A")

class ConcreteStateB(State):
    def handle(self):
        print("Handling State B")

class Context:
    def __init__(self, state):
        self.state = state

    def set_state(self, state):
        self.state = state

    def request(self):
        self.state.handle()

# Example usage
state_a = ConcreteStateA()
state_b = ConcreteStateB()

context = Context(state_a)
context.request()  # Output: Handling State A

context.set_state(state_b)
context.request()  # Output: Handling State B

Interpreter Pattern

The Interpreter pattern defines a grammar and provides a way to interpret sentences in that grammar. This is often used for parsing or evaluating expressions.

Example:

class Expression:
    def interpret(self, context):
        pass

class Number(Expression):
    def __init__(self, value):
        self.value = value

    def interpret(self, context):
        return self.value

class Add(Expression):
    def __init__(self, left, right):
        self.left = left
        self.right = right

    def interpret(self, context):
        return self.left.interpret(context) + self.right.interpret(context)

class Subtract(Expression):
    def __init__(self, left, right):
        self.left = left
        self.right = right

    def interpret(self, context):
        return self.left.interpret(context) - self.right.interpret(context)

# Example usage
context = {}
expression = Add(Number(5), Subtract(Number(10), Number(3)))
print(expression.interpret(context))  # Output: 12

Iterator Pattern

The Iterator pattern provides a way to access elements of a collection sequentially without exposing its underlying representation.

Example:

class Iterator:
    def __init__(self, collection):
        self.collection = collection
        self.index = 0

    def has_next(self):
        return self.index < len(self.collection)

    def next(self):
        if self.has_next():
            value = self.collection[self.index]
            self.index += 1
            return value
        raise StopIteration

# Example usage
collection = [1, 2, 3, 4, 5]
iterator = Iterator(collection)

while iterator.has_next():
    print(iterator.next())

Mediator Pattern

The Mediator pattern centralizes complex communication between objects, promoting loose coupling.

Example:

class Mediator:
    def notify(self, sender, event):
        pass

class ConcreteMediator(Mediator):
    def __init__(self, component1, component2):
        self.component1 = component1
        self.component1.mediator = self
        self.component2 = component2
        self.component2.mediator = self

    def notify(self, sender, event):
        if event == "A":
            print("Mediator reacts to event A and triggers component2.")
            self.component2.do_c()
        elif event == "B":
            print("Mediator reacts to event B and triggers component1.")
            self.component1.do_a()

class Component:
    def __init__(self):
        self.mediator = None

class Component1(Component):
    def do_a(self):
        print("Component1 does A.")
        self.mediator.notify(self, "A")

class Component2(Component):
    def do_c(self):
        print("Component2 does C.")

# Example usage
component1 = Component1()
component2 = Component2()
mediator = ConcreteMediator(component1, component2)
component1.do_a()

Memento Pattern

The Memento pattern captures and restores an object’s internal state without violating encapsulation.

Example:

class Memento:
    def __init__(self, state):
        self.state = state

class Originator:
    def __init__(self):
        self.state = None

    def set_state(self, state):
        self.state = state

    def save_to_memento(self):
        return Memento(self.state)

    def restore_from_memento(self, memento):
        self.state = memento.state

class Caretaker:
    def __init__(self):
        self.mementos = []

    def add_memento(self, memento):
        self.mementos.append(memento)

    def get_memento(self, index):
        return self.mementos[index]

# Example usage
originator = Originator()
caretaker = Caretaker()

originator.set_state("State1")
caretaker.add_memento(originator.save_to_memento())

originator.set_state("State2")
caretaker.add_memento(originator.save_to_memento())

originator.restore_from_memento(caretaker.get_memento(0))
print(originator.state)  # Output: State1

Template Method Pattern

The Template Method pattern defines the skeleton of an algorithm in a base class while allowing subclasses to redefine specific steps of the algorithm.

Example:

class AbstractClass:
    def template_method(self):
        self.step_one()
        self.step_two()
        self.step_three()

    def step_one(self):
        print("AbstractClass: Step One")

    def step_two(self):
        pass

    def step_three(self):
        print("AbstractClass: Step Three")

class ConcreteClassA(AbstractClass):
    def step_two(self):
        print("ConcreteClassA: Step Two")

class ConcreteClassB(AbstractClass):
    def step_two(self):
        print("ConcreteClassB: Step Two")

# Example usage
a = ConcreteClassA()
b = ConcreteClassB()
a.template_method()
# Output:
# AbstractClass: Step One
# ConcreteClassA: Step Two
# AbstractClass: Step Three

b.template_method()
# Output:
# AbstractClass: Step One
# ConcreteClassB: Step Two
# AbstractClass: Step Three

Visitor Pattern

The Visitor pattern allows you to add new operations to a class hierarchy without modifying the classes.

Example:

class Visitor:
    def visit(self, element):
        pass

class ConcreteVisitor(Visitor):
    def visit(self, element):
        print(f"Visiting {element.name}")

class Element:
    def accept(self, visitor):
        pass

class ConcreteElementA(Element):
    def __init__(self):
        self.name = "Element A"

    def accept(self, visitor):
        visitor.visit(self)

class ConcreteElementB(Element):
    def __init__(self):
        self.name = "Element B"

    def accept(self, visitor):
        visitor.visit(self)

# Example usage
elements = [ConcreteElementA(), ConcreteElementB()]
visitor = ConcreteVisitor()
for element in elements:
    element.accept(visitor)
# Output:
# Visiting Element A
# Visiting Element B



Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • MLOps: Model Training at Scale
  • MLOps: DevOps for ML systems
  • MLOps: Cloud Computing Definitions
  • MLOps: Cloud Computing
  • MLOps: Introduction